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The investigation to be presented is based on S, theory in its original form. Analytical
solutions of the S, and .S, differential equations in spherical geometry will be derived,
based on solutions in closed form of the S, equations in vacuum. In the nonvacuum case
analytical solutions contain all exponents of r present in the vacuum case, plus an
additional term in /nr multiplied by a power series which starts with r* in S, approxima-
tion and with #* in S, approximation. The general solution is subject to the symmetry
condition at » = 0 and will thus contain only terms bounded at the singular point.
It will be shown that results go over into the vacuum solution in the limit of vanishing
density.

1. INTRODUCTION

In reactor theory the detailed neutron distribution in the core and reflector of a
nuclear reactor is governed by the transport equation. Since practical systems are
so involved as to preclude rigorous solutions, approximations must be employed
in order to derive expressions for the neutron distribution in space and energy.
One such approximation is Carlson’s S, theory [1]. The general form of the S,
solutions in cylindrical geometry was first discussed by Beuchat [2]. Mennig [3]
derived explicit solutions in spherical geometry.

The S, method is intrinsically a semianalytical approximation. Subdividing the
angular variable into a finite number of intervals changes the neutron transport
equation into a system of ordinary differential equations in space. This may be
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transformed into the fully numerical S, method on which most codes are based by
further discretization of the spatial variables.

Starting from the semianalytical form of S, theory the present paper considers
the problem of finding analytical solutions of the monoenergetic S, differential
equations in spherical geometry. The fully numerical approach avoids difficulties
at the singular point » = 0 by integrating over a finite voiume element. In contrast
to this, determination of the analytical solution in the region surrounding r = §
represents the major problem in semianalytical S, theory. In treating this probiem
one alsc has a practical goal in mind: Analytical S, caiculations with Lie series
in plane geometry [4] have led to particularly short computing times. Similar
results were obtained from the spherical harmonics program LIE-PN [5]
cylindrical geometry which, like S, theory, treats singular differential eguations 1
the innermost zone. Hence there exists hope that the analytical approach to
spherical geometry will likewise show certain advantages over fully numerical
methods. Admittedly, computing times for one-dimensional problems are sho:t,
no matter which method is being used. However, the frequent need for performing
many successive one-dimensional calculations in a single program provides zn
incentive for performing each one as rapidly as possibie.

Recent versions of Carlson’s original §, formalism have lead to shorter com-
puting times and to improved convergence in purely numerical compuiations.
However, since analytical solutions are independent of this effect, and since the
original method is still the one most widely used in text books, it was decidec to
base the treatment to be presented on the latter. The derivation to be outlined may,
of course, be applied to any other set of differential equations corresponding to
other modes of angular discretization.

i
i
53

2. FORMULATION OF THE PROBLEM

The monoenergetic neutron transport 'Jequation for Pi-scattering in spherical
geometry {6] is given by

~ v

2 1—u? ¢ , 3
(HT+—LM )gv(l‘,,u,)— “@(;)+ LW J),

[4 Ia

where

2y = 2+ vy, D(r) = 5 olr, ' dp,
1

2y =2, Jr) =1 welr, 1) du';
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and where

@(r, p) = neutron flux in neutrons/cm? sec,
p = cosine of angle between direction of neutron flight and 7,
2y = isotropic part of macroscopic neutron scattering cross-section,
2y = linearly anisotropic part of macroscopic neutron scattering
cross-section,
2’; = macroscopic fission cross-section,
2 = total macroscopic neutron cross-section.

The term “P;-scattering” implies that only the Py(r) and P,(u) terms are kept in
an expansion of the scattering cross-section into a series of Legendre polynomials
in u.

If several concentric zones are present ¢, X, 2y, 2, , @, and J will carry an
additional index m:

Zone m: Py <P <1y, m=12,.., M.

For the innermost zone (m = 1) r, = 0. Owing to the singularity at » = 0 this
zone is of particular interest and finding the neutron distribution in it turns out to
be the main problem in solving Eq (1) for all zones. Lie series solutions may be
used in those regions where r,,_; 5= 0 [2] [5] [7] [8], with series coefficients obtained
recursively from the differential equations. Owing to its simplicity the case with
Fm— 7= 0 will not be discussed further in this paper. The treatment to be presented
will thus be confined to the inner zone (0 < r << R), allowing the zone index to be
omitted. In a one-region problem the solution will be valid throughout the entire
zone. In contrast to this, a fully numerical treatment requires even single zone
problems to be divided into several subzones. The required solution, @(r, w), is
determined by Eq. (1) and the imposed boundary conditions. The neutron distri-
bution in a spherical reactor of outer radius R must obey the following boundary
conditions:

@0, p) = @0, —p),

@

The first step consists of subdividing the angular variable p into n = 2N
intervals I; = [u; , u;14], and to approximate ¢(r, p) linearly in p in each interval:

Hi+1 — B o 2
r r r), 3
@i, p) = i1 — ‘PJ( )+ e — g Pral(r) 3

where
j=12,...
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The right-hand side of Eq. (1) is integrated numerically by any of several weii-
known methods, resulting in the expressions below

+1 24‘4‘“_-r1
O0) = [ ol W) d’ = T wieilr)
- k=1
@
+1 2N+1
10 = [ et wydw =3, win)
- k=1

where
Pu(r) = o(r, pe)

wy and w,? are weight factors depending on the method of integration employed.
Angular integration over an interval /; with use of Eq. (3) transforms Eq. (1}
into the following set of differential equations [9]:

2N+1
&1 Piaall) ﬁ:i+1‘P:iI(r )+ ‘}’,: (9ja(r) — @ir)) = z @i, 10:7) (53
5=1
where
i=12,..,2N,
with
I U g, = Pt 2m =y 4
JH T I > J+H1 — 6 9 Yiqp = A El

i — 1
4= pi— pys I“"j:_i_e_]T’

where primes denote differentiation with respect to r. In these equations all material
constants are contained in the coefficients a;,, ; on the right-hand side:

5 3 .z |
i1 = —‘2i wit 4 2 Zi(pipr + ) Wi — 5 (Ors41 + Bis)s

It will be noted that the set of 2N differential equations, Eq. (5), contains
(2N + 1) unknowns. For this reason Eq. (5) must be augmented by an additional
differential equation obtained by setting p = u; = —1 in Eq. (1) [1]. This vields

2z 3
— @)+ Eqalr) = SLOG) — 5 ZI0)
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or, with use of Eq. (4),

2N+1

, 2z 3
—@/(r) = Z ay,:Px(r), ay,p = ‘"2L wyt — 3 Wit — 205z -

k=1

The problem now is reduced to solving the following set of S, differential
equations:

2N+1

[#0) + 22 00)] + [#520) = L 9] b = 3 Aty ©

with
0 Jj=1L
aj
b; = B; o = —l, AJL—%a
— j>1, !
o5
0 j=1, 0 j=1,
K; — Kj* =
5 17 h 5, 1~ 1,
Jj=1,2,.,2N+ 1.
After discretization the boundary conditions become
(PJ(O) = (PN+1+J'(O)’ .] = 1: 29"'3 N: (71)
pi(R) =0, j=12.,N, N+ L (1.2)

3. VACUUM SOLUTION OF THE S, DIFFERENTIAL EQUATIONS

The vacuum is characterized by 2, = 2 = 2 = 0. In this special case all
A;;, = 0 and the S, differential equations become

P'(r) =0,
' i , K .
o/ () + L o) + bipia) — L@ =0,  j=23. @
The first line of Eq. (8) may be integrated at once, giving

py(r) = C; = const. ©)
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[
]
Ld

Knowing ¢ it is easy to calculate @, , @, , etc., since at any step {/) ¢;_; is known
from the preceding step. The solution of Eq. (8) results in the recursion rejation
below

@) = Cr™ — by, () + w{L 4 by r™ j F g () dr.

(C; = integration constant.} (iC}

Substituting ¢y = C; (j = 2) in Eq. (10) one finds for ¢,(r)
Plr) = Ol O™, (11.5)
On = Co = 1. . ‘

@s(r) is obtained by substituting ¢.(r) into Eq. (10), givicg
#s(r) = OnCy + Our™°Cy + Qo ™Cs, .
On=0u=1 Qn—2Tlt20,.
All 3 solutions @,(1)—p,(r) are of the form

gi{r) = Zl Qi C;, (g =0,j=1,2,3) {11.3}

it may be shown by a process of complete induction that this form of the solution
is valid not only for j = 1, 2, and 3, but for every je {1, 2/ - 11
Making the replacement
k;y = —x;

z

the solution in vacuum becomes

J
ki ; 7 ~
@) = ). Q;7"C;, Jell, 2N + 1], (12)
i=1
with
QLI = Q]',J' = 17 PRIPRN
‘ {13)
Q Q K5+ b.’le' L) -
L. o= g g ——— == ¥
7, j—1,% K — K; H J 7

Implicit in this solution is the assumption that the denominator of @; ; differs
from zero, i.e.,

J
T («,— «) = 0. (14

/
I=i+1
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This condition is always fulfilled by a uniform subdivision of the angular interval
(Ap; = piyg — py = comst.).

Eq. (12) represents the general vacuum solution of the S, differential equations,
Eq. (8). The solution contains 2N + 1 integration constants C;, N of which are
eliminated by application of boundary condition (7.1), removing all terms from
Eq. (12) for which k; << 0. The remaining N -+ 1 integration constants C;
(Cy+s = 0 for j > 1) allow the N + 1 boundary conditions at r = R, Eq. (7.2),
to be satisfied.

4. SOLUTION OF THE S, DIFFERENTIAL EQUATIONS WITH X % 0

While the special case of vacaum (“2 = 0” stands for 2, = 2} = 2 = ()
permits solutions of the S, differential equations to be written down in closed
form, this is no longer possible when 2 5= 0 even in the lowest approximation of
»n = 2. The vacuum solution derived in Section 3 does, however, yield valuable
information concerning the expected form of the solution when 2’ # 0.

Putting » = 2N = 2 in Eq. (6) one derives the following set of S, equations:

e (r) = 7;1 Ay xpi(r)
[ =3 00] +2[p O+ 0] = L m®) (9

[‘Pa'(”) + %‘ ‘Pa(r)] -+ % [‘le(") - ; %(")] = kz::,l As pp(r).

Equation (15) does not appear to have been treated in the literature, and hence
nothing is known about the form of its solution. In order to gain some insight into
what the solution might be like, we shall first solve the equations in vacuum.
Equation (12) for n = 2, corresponding to Eq. (15) with 4; , = 0, gives

P = C;

@y = Cy + Cor* (16)
1

ey = C; + Cz;i-

Boundary condition (7.1) requires that

1(0) = ¢3(0)
or 17
C; = 0.
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The boundary condition is thus equivalent to requiring @, {r) to stay bounded ai
r=0

Knowledge of the solution in vacuum facilitates the finding of the general
solution [i.e. the solution of Egs. (15) and (7)]. In the limit 2y, 2y, 2 — § the
general solution must go over into the vacuum solution:

(general solution)s,,x,, 5o — vacuum solution.

Such a solution must therefore contain 2 integration constants C; .
The following ansatz will be made for the general S, solution {cf. [2]):

o) = Y frur & (AInr) S by (8
v=( p=0

Substituting this ansatz into Eq. (6) (with N = 1) leads to the following relation:
w(fio — ficro) 77t

o

( 3 *
+ 2, r 3[(” + k) fiw + 00 — 8V iy + Pips bl = Y Aot
!

p==i E=1 i

t

+nr -t g[(V + k) hjpea + b5y — 1) By ] Z Aty 52 = 0.
v=1 =1

(19.1}

The coeflicients of r~, '~ (v > 1), and r*~! In r must vanish separately, resulting
in the equations below:

f,v',o -fa'—l,o =0
v > 10 v+ k) fi+ 0 — &) ficaw + Muea + OBy 10s — D Aipfrng = 0
k=2
3
vzl (vt k) s+ By — ) g — ) Anfras {15.2)
k=1

Since negative indices are not allowed,
fra=hs=h =l _3="h =18 =0
The first line of Eq. (19.2) implies
Jio = Cy,

where C, is an arbitrary constant. Putting v = 4 in the second line of Eq. (19.2)
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and j = 2 and 3 shows that the coefficient of f, , vanishes both times. One is
therefore justified in putting

f:2,4 = C27

with C, another arbitrary constant.

Since the relations in Eq. (19.2) are linear it follows that all f; , and /; , may be
represented by linear combinations of C; and C,. One is therefore led to the
following ansatz:

f;',v = f;'l,vcl —l_szvcz s
by, = hyl',vcl + 1712',VC:2 .

(20)

From f; o = C;, f3.4 = C,, and the fact that coefficients with negative indices are
zero it follows that

f]l',ozlb f.%,():O’
fé,él = 0, fg,'-l = la (201)
h},—v = h.ﬂz',—v = f},—v = f;z',—v 0 (V > O)

Substitution of Eq. (20) into Eq. (19.2) with the requirement that the resulting
equations be satisfied for arbitrary values of C; and C2 leads to 4 equations for the
Crindependent quantities /7, , /2 and /2,

IR ]v?

3
O+ k) fiy+ by — &) fiaw + By -+ bili g s — Y Aipfie =0 (2L1)

k=1

3
0+ k) fio + b — 1) [lan + By + biha s — Y, Ajafiea =0 (21.2)

k=1

3
(v + ) h},v—; + by — &™) h}—l,v—:l - z Ai,lsh}c,v—.a =0 (21.3)
k=1
3
v+ ;) hjz',v—-'l + bj(V — K;%) 17;%—_1,1;—4 - z Aj,khl%,u—5 =0. (21.4)
k=1
Equation (21) together with the initial conditions gives
h,=0 for all »,
fia=f}2=fls=0 forallj.

(22)
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Eqguation (20) now simplifies to

233
h) v — ”I},UC].
The functions one is looking for, @,(r), have the form
< 1 v 7.4 - 1 v\k !! x' £2 V\ £ AN
pfr) = z fin"+ ¢ lnr) Z h o P G+ ‘Z Jil ; Cy 24
w=0 v=0 s w=1
or
@i(r) = @(r) C; + @(r) . {25)

In solving for the expansion coefficients 1, , /7, , and %}, , one must distingnish
the following 3 cases:

v=1273; v = 4; v >4,

Final resulis for the S, case are

v =0 f}‘ozl, fic':&
v =1,2,3: fi,from Eq. (I) below; Fi=0
1 1 2 1 3l
v=4 fie= 2 Az fea=0;
el

3
Moy = —12fis+ ) Aoifis;
k:‘l

1 hay 1S 1
3.4 — T 12 ‘|"5 ‘Z Asifis
Bl
]?4 = faa= Mo =1, =0; f3.=1;
v >4 h, 4 from Eq. I1,

f1, from Eq. III,

2 from Eq. IV.

S i
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1 v
(I) fi,v— b(V+K )f]—lv V+K]L;A]kfk”—l,
— K; 1

) o= = b (52 B+ 5 X Arilis.
) V— Kj h},u—4 bih}—l,v—fl

am  fi. = [bj(V—I—K )f’—1"+v+xj+ v+ K ]

v + K; 2_: AJ kfkv—l’

(IV) f2 —_ [ ( )f h?,v—:i + b:ih?—l,v-—tl ]

i + k; -t T v + K v+ Kj
+7_{TK_2Akakv—1 (.]:1’2a3)

This completes the derivation. All coefficients f;,, and 4;, are seen to be determined
unambiguously. Moreover, the solution is bounded at the origin, thus satisfying
boundary condition (7.1), and contains 2 arbitrary constants C, and C, needed for
satisfying boundary condition (7.2). It is, therefore, the complete solution of
Eq. (15).

1t may be argued that a more general ansatz of the form

(pJ(r) - Zf;v'v_l— (r4lnpr) Zh:lv
y=0
with p some integer could equally well have been used in place of Eq. (18). However,
for p # 1 all k;, turn out to be zero, so that the resulting ¢;(r) is not the most
general solution. The latter requires p to equal 1, corresponding to Eq. (18).

5. SOLUTION OF THE S, DIFFERENTIAL EQUATIONS FOR X £ 0

The S, approximation is obtained by putting n = 2N = 4. According to Eq. (6)
the S, differential equations are

p/(r) = IZ,I Ay xpu(r)

5

[020) =220 +2 [0 + 2 00)] = Y. Ausuls)
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(9000 = 2] + 2[00 + 0] = 3, st

{?47(") + l} @4(")] -+ % {‘Pa r) — 2_ Ps(r}) } Z_, Ay i)

[\
o
e

[0+ 3 0:0] + 1 [00 ~ 50 0] = 3 A 05

A solution of these equations is again suggested by the vacuum solution in
analogy with the approach employed in S, theory. The §, solution in vacuum,
Eq. (12), for n = 4 becomes

(Pl(r) = Cl s

@ur) = Cy -+ r3RC,,

ps(r) = C; -+ 15°2C, + r22C,, )
pulr) = Cy + r*2C,y +rug,,

pa(r) = Cy — &0, 2G5

Boundary conditions (7.1) at r = 0 require that

(0} = ¢5(0),
P2(0) = 40).

Applying this to the vacuum solution of Eq. (27) implies
C,=6C;=0
sc that the vacuum solution that is bounded at the origin becomes
f.ﬂj«"ac(") =G+ "5/2Q5,2C-z + 5‘22Qj,3C3 .

One now makes the following ansatz for the solution of Eq. (26), satisfying
boundary condition (28):

i) = X S + 12 Y g+ (R0 ) Y by (29)

»==0 »=0 =0

581/r5/2-5
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The S, differential equations yield relations from which the expansion coeflicients
fivs 8., and h; , may be determined:

5
v+ &) fs0 + by — &) fi1w T Bipma + bihi_1,0-20 — Z A; i fewa =0, (30.1)
k=1
5
(V + K; + %) &i.v _I_ bi(V - KJ'* + %) i1,y — Z Aj,kgk,v-l - 0’ (302)
k=1

5
v+ k) By e + by — %) y_q,p 00 — Z A; ihyas = 0, (30.3)
k=1
(.] - 1’ 2’ 35 45 S;f;-,_,, = &j,— — hj,—v = 0)
Initial values f; 4, g;.0, and #4; ,, needed for solving the recursion relations (30),
are obtained from Eqgs. (30.1) and (30.2) by putting » = 0, and from Eqgs. (30.1)
and (30.3) by puiting v = 22,
v =0, Eq. (30.1)
by =0, j=1—-0-fi0=0—f10,=0C, (1st integration constant)

J=23,45 —foo=/lao=I 1o =Is0=0Ci; (D)

vy =0, Eq.(30.2)

Jj=1 — 810 =0,
j=2 —=>0:80=0—>g,=0C,, (2nd integration constant)
j=345: ~> 830 = 13Cs, G0 = Cos &50 =0. (32)

On the one hand, initial values of g; , depend only on C, , on the other, recursion
relations for g;, involve neither f;, nor #;,. It is clear, therefore, that g; , can
depend only on C, and that one can put

&iv = g?.vcz . (33)

Substituting this into Eq. (30.1) and noting that (v + «; + 2) + 0 one finds the
recursion relation for g7, below, valid for v > 0

2
gj,v -

b(V_Kj*JF%)Z o 3 g 34
’ v+ ;4 %, &1y V+Kj+:§;,§1 7.8kt - (34)
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Since, h; _, = 0 for 1 < v < 21 Eq. (30.1) simplifies in this range to
(v + ) fiw + DAV — &) fia, — Z AppSeo =9 (35}
k=1

In this interval of v the coefficient f;, depends only on f,, = C,. Hence for
I < v < 21 one puts

f;',v = f}_,C: .

e )
N

Eqgs. (35) and (36) together give

ES
£ VK 1 £
“’”w—b’-(v—!-fc.)fj'” V;K ZAMJM—T‘ I E
; ‘

The case of v = 22 must be discussed separately, because in this instance
+ x;} = G forj = 3:

y =22,  Eq.(30.3)

j=12->h,=0, By =0;
j=3 —>0-h,=0.
This provides no information about %, , . Putting
By o = C3*,
j=4,5—>hy,=h =0

¢ = C,* is obtained from Eq. (30.1):

/1 5
10 = {\22 721 Al,k‘f}c,zl) C, = Ji

b ik
™3
R
0

- 20 22 )
o (Bt 3 3 rta) 6= e

0 ‘fa,zz + 66]%,22(:’1 + hs,o - (Z /iss,kfji;,-zz C
E=1

i
@

Js.05 cannot be determined from this equation because its coefficient is zero.
One therefore puts

Jooe = C; (3rd integration constant).
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Furthermore, one has

5
hyg = G = [“66}[;,22 + Z A3,?cf}c,21:| ¢ = 11;,0C1 s

k=1

1 1 &
Jroe = (_ %6 é,o + 33 z A4.kf%c,21) C = f1,22C1 s
k=1

PR
!
0

= =35 1.2 T 353 A,ﬂf-,)czfs,ﬂ
( 20 4,22 24 ]‘-Z:‘]_ 5,kJ k,21 1
All quantities f; ,, are of the form

fj,zz = fal‘.22C1 + f?,zzca )

with
10— L S A, fL s o
f1ee = 2 Z RUTE fiw=10;
k=1
20 2 38
fom = — St as 2, A, S ro1 s 3 e =0
2,2 137 122 39];::1 v k21 fs

f%.‘zz =0, h;,o = ‘“66f~%2 + Z Askfl%n ’ fg,zz =1;
k=1

] 13
fi.zz = - Eghé,o + 33 Z A4,kf%~,21 » fi,z-z = 0;
k=1
13 12
é.zz = - 2‘6][1,22 + 54 Z As,kf%',m P fg.‘zz = 0;
k=1
and all /;  have the form
h;‘,o = hal',0C1 s
with
0 Jj#3;

hjl',o =

5
—'66f;,22 + Z As.kfl%,m » J= 3.
B=1

(38)

(39



A
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v > 22:

in this case (v -+ «;) 5= 0 and the previously determined values of %; , now
permit recursive calculation of all #;, . #;, is proportional to C,, according to
Eg. (39), and 4;, is obtained recursively from #; , . Hence all 4, , are 2isc propor-
tional to C; and one can make the ansatz

Bjne = H,00C (40)

Eqgs. (30.3) and (40) then give

h;?l’,v—zz — _b (V_ KJ )h] ~1,v- >0+

v - x Z A;, k’?z w23 -

Jll

¥

The constants f;,, for v > 22 are found in similar manner by an extension of the
form found for v = 22:

1 3 £
f;',v = f]',vcl +fi,vc3 - (éri}

Substitution of f;, , Eq. (41), into Eq. (30.1) and solving for /7, and f3, results in
the relation

i o= —b, (V )f [ Sy Fav-ge . Sowet AspS b
Jiv — V+K 71,7 V"I'Kj jV“{"‘K.j-T V+K 5
5 \ )
2 vV — . 3 1
fj,v - b ( v _|_ ’©; )fa—l v (Lgl AJ,kfk.:wl/P v _1_ K; .

With initial values f} ., and f3,, known from previous calculations, and with
(v -- ;) % 0 for all v > 22, all f}, and f7, may be determined recursively-from
Eq. (42).

The solution ¢,(r) now presents itself in the following form:

7 o

240 = (3 Grarranti ) € + 8 (T ,7) G+ (T A
v=>0 / \ \p=22 ,’
or
@) = @Mr) Ci + () C; + 9N Cs .

An interesting feature of this result is the fact that neither ¢;}{r) nor »(r) are
expressible in terms of pure power series alone. ¢,2(r) is nondifferentiable at » =
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and ¢;X(r) possesses only derivatives of order 1 to 21 at this point. However, both
@;%(r) and ¢,(r) are bounded at r = 0:

m ¢20) = £;00) = 1,
lim ¢,r) = 0.

In the special case of 2y = 2} = X = 0 (4;;, = 0), i.e. for vacuum, one finds

hj,v = Oa
fin=0 (»>0),
0 =22,

[ -
f.i,22_ “- j:22;
giv = 0 (V > 0)'

For 2y = 2| = 2 = 0 the general solution is thus seen to go over into the vacuum
solution, as it should:

(Pl(r) = Cl 2

@or) = Cy + 132Gy,

Pr) = Cy -+ 1rC, + 172Gy,
@u(r) = Cy +1r32C,,

os(r) = C;.

6. GENERALIZATION

Comparison of the vacuum solution (£ = 0) with the general solution (X  0)
in S, and S, approximation suggests a way to proceed in the general case of 2 5 0
and n arbitrary, as indicated in Table 1.

TABLE I
n 2 = 0 (vacuum) =0
2 =9 =C
g2 = CL + Gy () = f£) + (1) biG)
4 =9 =G

P = ¢y = Cy + r°*C,

18
P = C1 + 'l PrECy +r2Cy P = filr) + PPg(r) + (* In7) B




SOLUTION OF S; AND S, EQUATIONS i85

The vacuum solution of the §, differential eguations (Eq.
boundary condition at r = 0 is

£2
s
&2
o
&
=
o,
1721
§
w
<
3
b
-
B
o

@i (1) = Z 0;..Ci* {43

=1
where only k; > 0 enter into the series and Cy,; = 0 for/ > 1. Starting from this
solution, the general solution in S, and S; approximation was obtained in two steps:

1. 0;,:C; is replaced by a power series F; (r) in all terms of ¢!*° whose k;
are not integers.

2. @, ;C; is replaced by a product of a power series and (In ) in terms where
k, is an integer.

More than a single integer k; can occur in approximations with » > 4, as shown
in Table I below. (k; == 0, the heavy line separates positive values of k; from
negative ones).

Whenever more than one integer &; occurs a factor (in r)*r should be introduced,
where M, is equal to the order number of k; arranged in a sequence of increasing
magnitude (index r). Apart from this, the two generalizing steps derived on the
basiz of S, and S, sclutions are retained. Applying this fo the higher order 3
solutions and using the table of k; values one finds:

22
St @@ = Far) + 1 7F o) + (0 Inr) F}_3(;-} + [P0 1)L E (),
St @) = Fpal) + 1 F (i)+r7ﬂs(f)+ g 7u§’)+(f941 7Y Fy 5

St 5i0) = Fy (1) + 1, o) + 1 5F o) -+ (75 ) By ) = [ 1)) Fy )
+ [P0 ] F o),

441 -8

gl 73 A , 25+ ) .
Sust 90 = Foa) + 1 5By ar) £ 100 + £ SEL) T )+ R )
IR F),  ete,

with
sz(") = Z F; .0
v==0

In the general case (n — arbitrary) the functions F; () wiii contain a total of
N - 1 integration constants C; so that an alternative way of expressing ¢,(r} is

N1

@y (r) = Z ) Crs J=1,2,..,2N + L (44
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TABLE II

Se—> S5 Si Ss S5 Sw Stz Si S1s Sis Sao
#2=N—> 1 2 3 4 5 6 7 8 9 10
iV ki ki ke Kk k; k; ks k; k; k;
2 4 2% 22 21 22 21 2% 2L 22 24
3 2 2 10 8z 73 73 7 618 68 618
4 -1 52 20fF 16 141 135 123 12% 111e
5 -2 -2 94 34 253 22 20& 19 18%
6 —8 —47 148 50% 364 31 28 261
7 -2 —16% —74 214 70 493 411 3418
8 ~7% —27% 107 292 92} 64 528
9 -2 —14 —402 146 382 118 802
10 —610 _2»1 5  —191 484 1461
11 -2 —123¢ 32 —74 =242 598
12 —68  —20 —43F —922 299
13 -2 —122  -28& 56 —117%:
14 —63¢ 188 378 —70%
15 -2 —1118 26 —47E
16 —6F  —171% 34}
17 -2 —112 2410
18 612 —173;
19 -2 — 1%
20 —6—1§3—
21 —2
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The discussion in this Section has been confined to a description of the general
procedure because an explicit derivation of the general solution for arbitrary »
would involve a prohibitively complicated mathematical formalism, as mey be
judged by the S, solution.

CONCLUDING REMARKS

It has been shown that analytical solutions may be derived for the space depen-
dence of the angular neutron distribution in S, theory. Since the mathematical
effort involved increases rapidly with increasing #, practical considerations limit
the order of S, theory that can reasonably be treated analytically to relativeiy low
values of n. Practice has shown, however, that a low order theory like S, suffices
for calculating the neutron flux in most nuclear reactors.

When r is large, one might preferably employ S, theory [10] {11], which, in a
sense, is complementary to S, theory. While the latter subdivides p into discrete
intervals and leaves r analyiic, the former subdivides the spatial variable into
discrete intervals and leaves p analytic. S, theory has so far been restricted o
plane geometry. Extending it to spherical geometry should be of cousiderable
mterest.
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